GROWTH AND CHARACTERIZATION OF ZnTiO₃ PEROVSKITE FILM ON SI SUBSTRATE

Win Pa PaKhaing¹, Thida Win², Than Than Win³ and Yin MaungMaung⁴

Abstract

Zinc titanate (ZnTiO₃; ZT) powders were successfully prepared by a solid state reaction method. ZT powder were heated at various calcination temperatures ranging from 500 °C to 850 °C for 2h. Powder samples were characterized using thermo gravimetric (TGA), differential thermal analysis (DTA), X-ray diffractrometer (XRD), scanning electron microscopy (SEM). The second phases such as ZnO and TiO₂ were detected in the powders calcined below 850 °C. A single perovskite of the ZT powders was found with calcination temperatures at 850 °C. The TGA-DTA results corresponded to the XRD investigation. The crystalline powders were mixed with the solvent and deposited onto the silicon substrates by using spin coating method. Annealing of the deposited films were performed at temperatures ranging from 400°C to 800°C for 1h. The X-ray diffraction, scanning electron microscope and UV-vis spectroscopy have been employed to characterize the deposited films. The obtained 2D materials surface were ZnTiO₃ with cubic structure. The absorbance spectra exhibited visible light emission and optical band gap was 3.7 eV.

Keywords: ZnTiO₃perovskite, solid state reaction, spin coating, optical band gap

Introduction

TiO₂ and ZnO are both wide band semiconductor with excellent properties and extensive application, and have attracted much interest on either single material or ZnO-TiO₂composites .ZnO has attracted intensive research effort for its unique properties and versatile applications in transparent electronics, ultraviolet (UV) light emitters, piezoelectric devices, chemical sensors and spin electronics . One of the most important characteristics of ZnO is that it has a large binding energy (60 meV), which is significantly larger than other materials commonly used semiconductor for ¹. PhD candidate, Department of Physics, University of Yangon

² PhD candidate, Department of Physics, University of Yango

^{2.} Lecturer, Department of Physics, University of Yangon

^{3.} Associate Professor, Department of Physics, Mandalay University of Distance Education

^{4.} Associate Professor, Department of Physics, University of Mandalay

blue green light-emitters devices, such as ZnSe (22meV) and GaN (25 meV). On the other hand, titanium dioxide (TiO_2) is one of the most important semiconductors with high photo catalytic activity, being non-toxic, stable in aqueous solution, and relatively inexpensive. The excellent photo catalytic property of TiO₂ is due to its wide band gap and long lifetime of photo generated holes and electrons [Dulin, F.H. et al 1960]. Nowadays, due to the development of microwave dielectrics, zinc-titanates can be used as dielectric resonators and fiter in microwave devices [Kim, H.T et al 1999]. Thus, in this work, ultra-fine powders of ZnTiO₃ successfully were obtained via the combustion method. Perovskites are emerging as a new generation of photovoltaic materials. They are abundant in nature and have rapidly increasing power conversion efficiencies (PCE) of above 15% in common hybrid (mixed organic/inorganic)thin-film-based solar cells Burschka, J et al 2013- Wang, Q et al 2014]. The transition metal oxide such as TiO₂, their perovskite structures ZnTiO₃, is widely used in optical and microelectronic applications because of their excellent mechanical, optical and insulating properties. In the past few years zinc-titanium based oxide materials (Zn-Ti-O) have been used widely because of their outstanding properties and potential scientific and technical applications[Sun,D. et al 2011].Up to now, perovskite films have been formed by film deposition approaches such as spin-coating, sequential deposition of the inorganic and organic precursor, and co-evaporation of the precursors [Burschka, J et al 2013- Liu, M et al 2013]. It has a perovskite-type oxide structure and could be advantageous as a microwave resonator material [Kim, H. T et al 1999]. There are three compounds that exist in the $ZnO-TiO_2$ system: $ZnTiO_3$ with a hexagonal limonite structure (h-ZnTiO₃), Zn₂TiO₄ with a cubic spinel crystal structure, and Zn₂Ti₃O₈ with a cubic defect spinel structure [Bartram, S.F et al 1961]. Zn₂Ti₃O₈ has been observed as a low-temperature form of h- ZnTiO₃ that exists at T <820 °C [Steinike, U et al 1997], and is only produced based on the Zn₂TiO₄ phase [Kim, H.T et al 2001]. It is known that h- ZnTiO₃ decomposes into Zn_2TiO_4 and rutile TiO₂ at T >945°C [Dulin, F.H et al 1960], However, perovskite crystallizes very rapidly, so it is very challenging to form uniform, continuous, and leakage-free perovskite films by solution methods[Liu, M et al 2013]. In this study, depositions of the ZnTiO₃ thin films were carried out by spin coating method. In addition, the effect of structure and microstructures and optical properties of $ZnTiO_3$ thin films were studied, where the deposited films were annealed at temperatures ranging from 400°C to 800 °C.

Experimental Procedure

In this study, ZnO and TiO_2 were chosen as the starting materials. Firstly ZnO and TiO₂ powder with stoichiometry (ZnO:TiO₂= 1:1molar ratio) were mixed. Ethanol was added to the mixture powders . And then the mixture solution stirred with the magnetic stirrer and milled with the ball milling machine for 12hr. Thermal behavior of the sample was performed by TG-DTA analyzer in air to investigate the calcination temperature and possible phase transformation from 500 °C to 850 °C for 2h at a heating/ cooling rate of 5 °C/min. After the sample annealed at 850 °C, ZnTiO₃ crystals are obtained. When the crystals were dried and sieved uniform particles obtained. X-ray diffraction (XRD) was employed to identify the phase formed. The grain size was directly imaged, using scanning electron microscopy (SEM). The flow chart of preparation of ZnTiO₃ powder as shown in Figure 1. ZnTiO₃ films was prepared using ZnTiO₃ powder and 2-methoxy ethanol as solvent and silicon as substrate. Firstly ZnTiO₃ powder was mixed with the solvent and stirred the mixture for 5h. The preparation of ZnTiO₃ film was shown in figure 5. And then, A few drops of zinc titanate solution were placed on a silicon substrate and spin coated. The ZnTiO₃ films were annealed at 400 °C, 500 °C, 600 °C, 700 °C and 800 °C for 1h in atmosphere. X-ray diffraction (XRD) was employed to identify the phase formed were shown in figure 6(a-e). The grain size were directly imaged, using scanning electron microscopy (SEM) were shown in figure 7(a-e). The absorption spectrum of ZnTiO₃was shown in figure 8(a). The optical absorbance was measured using UV-VIS spectrometer as shown in figure 8(b).

Result and discussion

Thermal analysis

These are techniques by which the thermal behavior of substances is characterized. Whatever a substrate is heated expands and the variation in the extent of expansion with increasing temperature is dependent on the bond

energy/crystal structure etc. and hence on the type of material. Thus, the changes in crystal structure, coefficient of thermal expansion and melting, can be studied with the help of Differential Thermal Analysis (DTA measures the relative expansion/ contraction between a sample and the standard with varying temperature). Thermo gravimetric analysis (TGA) measures the change in mass of the sample with varying temperature there by indicating the onset, midpoint and completion of a reaction such as oxidation, decomposition, compound formation etc. The reaction of unheated treatment ZT powders taking place during heat treatment was investigated by thermo gravimetric analysis (TGA), differential thermal analysis (DTA). X-ray diffraction (XRD) was employed to identify the phase formed. The TGA and DTA curves of ZT powders prepared by the solid state reaction method.TG-DTA curve of uncalcined powder as shown in figure 2. The ZT powders demonstrated a three-stage weight loss; the first one was in the temperature range of 100 to 150 °C, the second one from 150 to 280 °C, and the last one began around 300 °C.

XRD analysis

X-ray powder diffraction is a rapid analytical technique used for phase identification of a crystalline material and can provide information on unit cell dimensions. The analyzed material is finely ground, homogenized, and average bulk composition determined. Based on the results of DTA and TGA, calcinations were carried out from 500 to 850 °C for 2 h, at a heating /cooling rate of 5 °C /min for the unheated ZT powders. After anneal from 500 to 700 °C, the precursor of ZnO and TiO₂ were detected. When the temperature went above 700 °C, the minor phase of ZnO remained. A high purity of the cubic perovskite phase was discovered in powders annealed at 850 °C. The XRD patterns of the ZT powders, formed with different calcination temperatures for 2hr at shown in figure 3(a). The XRD patterns of ZT powders after calcination at 850 °C as shown in Figure 3(b). The FWHM and crystalline size of ZnTiO₃ was listed in table 1.Grain size of ZT at various temperature shown in table 2. And then ZntiO₃ powder (850°C) was heated again at various temperatures. Result of the X-ray analysis of ZnTiO₃powderafter heat treatment at 400°C, 500°C, 600°C , 700°C and 800°C for 2h as shown in

in figure 6(a-e). Six diffracted peaks were formed on observed XRD profiles and well matched with those of $ZnTiO_3$ standard. The most intense peak was examined to be (311) collection. Among them, the highest peak was discovered in films annealed at 400 °C. As the detail of the film analysis by XRD, ZnTiO₃ film was successfully formed on to the Si substrate at different temperatures. Table (3) showed Crystalline size of ZnTiO₃ film at different temperatures.

SEM analysis

The particle morphology and size were directly imaged, using scanning electron microscopy (SEM) and the particle size distribution was determined. The SEM micrographs of ZnTiO₃ powders annealed at different temperatures: 500°C, 600°C, 700°C, 800°C, 850°C for 2 h in air. The sphere like particles seemed to distribute homogeneously. The grain size increase with the increase in the various temperature and caused faster grain growth, thus resulting in better crystallinity as confirmed by the X-ray diffraction analysis. The grain size of ZnTiO₃ powder at different temperature was shown in table 2. They were estimated to be 228.5 nm, at 500°C, 287.5 nm at 600°C, 285.7 nm at 700°C, 406.3 nm at 800°C and 400nm at 850°C. All of SEM images were separated by some porosity. As a result, it was said to be porous structure. The grain size of particle appears to increase in increasing temperature. As discussed earlier, the higher annealing temperature tends to promote phase formation and grain growth. The microstructures of the films were analyzed by using SEM. The zinc titanate films were deposited on silicon substrates at different temperatures. The SEM images of zinc titanate films from 400-800°Cwere shown in figure7(a-e). SEM images indicated the normal grain distribution and porous structures. The majority grains on SEM images were ZnTiO₃. The grain size of the ZnTiO₃ films were measured to be500 nm, 550 nm, 550nm, 568nm and 587 nm at different temperatures. The annealing temperatures were helpful in increasing gain size. Table (4) showed grain sizes of ZnTiO₃films at different temperatures.

UV-VIS analysis

The preparation of ZnTiO₃ film, zinc titanate films were characterized by UV absorbance spectra. The optical properties of ZnTiO₃ film are determined from absorbance measurement in the range of 263-982nm. The maximum absorbance was found at 284nm for ZnTiO₃ films. The absorption spectra of ZnTiO₃was shown in figure 4(a) .From the dependence of the absorption band edge on wavelength, the energy gap of the material can be determined. When the energy of the incident photon is greater than that of the band gap (hv>E_g) the absorption coefficient ' α ' is given by

$$\alpha = \frac{A}{hv} \left(hv - E_g \right)^{1/2} - \dots - (1)$$

where A is constant and hv is the photon energy.

From the curve αhv^2 versus hv, the band gap was identified by extrapolating the linear region of the curve to the energy axis. The energy band gap value of zinc titanate film was in figure 4(b). In these results, the band gap value of Zinc titanate film was examined to be 3.7 eV.

$$\alpha = 2.3026 \text{ A/t} \dots (2)$$

where t is thickness of the sample and A is the absorbance.

Figure 1. Flow chart for the preparation of ZnTiO₃ powder

Thermal Analysis

Figure 2. DTA-TG curves of uncalcined ZT powders

Figure 3(a). XRD patterns of ZT powders with various calcination temperatures for 2hr

Figure 3(b) XRD patterns of ZT powders after calcination at 850 °C

Figure 4. SEM analysis of ZnTiO3 powderscalcinedat 850 °C

Figure 5. Flow chart for the preparation of ZnTiO₃ film

Figure 6 (a). XRD patterns of ZnTiO₃ film at 400 °C

Figure 6 (b). XRD patterns of ZnTiO₃ film at 500 °C

Figure 6 (c). XRD patterns of ZnTiO₃ film at 600 °C

Figure 6 (d). XRD patterns of ZnTiO₃ film at 700 °C

Figure 6 (e). XRD patterns of ZnTiO₃ film at 800 °C

Figure 7(a). SEM analysis of ZnTiO, film at 400°C

Figure 7(b). SEM analysis of ZnTiO, film at 500°C

Figure 7(d). SEM analysis of ZnTiO, film at 700°C

Figure 7(e). SEM analysis of ZnTiO, film at 800°C

Figure 8(a) UV-VIS spectra of ZnTiO₃

Figure 8(b).Optical energy band gap of ZnTiO₃

Table 1. FWHM and crystalline size of ZnTiO3 at 850°	°C
--	----

Peaks	FWHM (degree)	Crystallite size (Å)
(220)	0.204	40.254
(311)	0.177	71.144
(422)	0.223	39.767
(511)	0.355	25.361
(440)	0.154	60.116
Average cr	ystalline size	47.328

 Table 2. Grain size of ZT at various temperature

Temperature (°C)	Grain Size (nm)	
500	228.5	
600	287.5	
700	285.7	
800	406.3	
850	400.0	

Temperature (°C)	cature (°C) Grain Size (nm)	
500	228.5	
600	287.5	
700	285.7	
800	406.3	
850	400.0	

Table 3 .Crystalline size of ZnTiO₃ films at different temperatures

Table 4 . Grain size of ZnTiO₃films at different temperatures

Temperature(°C)	Grain Size(nm)
400	500
500	550
600	550
700	565
800	588

Table 5. The comparison on band gaps of observed ZnTiO3 and others

Sr.No	Author	Journal	Band gap of ZnTiO ₃ (eV)
1	M.Vishwas et al	Nano-Research for	3.15 eV
		Advanced Materials	
		Technologies	
2	Kuhu Sarkar et al	Royal Society of	4.01 eV
	(2014)	Chemistry	
3	R.Hari Krishna	Asian Ceramic	3.60 eV
	(2014)	Societies	
4	Bak CHANDRU Yadav	Asian Ceramic	4.01 eV
	et al (2016)	Societies	
5	Observed Value		3.70 eV

Conclusion

Perovskite ZnTiO₃ powders can be successfully obtained by the solid state reaction technique and the best conditions for calcination are 850 °C. The annealing temperatures have a strong influence on the crystal structure, percent perovskite phase and the particle size of the ZT powders. Finally, presented SEM and X-ray analyses of ZT-850°C showed advantageous microstructures, with the appropriate pores/ materials ratio and application in the electronic industry as catalysts and color pigments. Heat treatment at 850°C enhanced the atomic mobility and caused the grain growth to result in a better crystallinity. Growth and characterization of ZnTiO₃ films have been studied at different annealing temperatures. As a result of XRD,ZnTiO₃ was absolutely formed onto the Si-substrate at given temperatures. From the SEM results, it was found that all SEM images were porous structures. From UV-VIS spectroscopy measurement, the band gap of ZnTiO₃was determined to be 3.7eV and it is quite satisfactory and credible compared with others for photovoltaic applications.

Acknowledgements

I would like to thank Professor Dr Khin Khin Win, Head of Department of Physics, University of Yangon, for her kind permission to carry out this work.

I also would like to thank Professor Dr Soe Soe Nwe, Department of Physics, University of Yangon, for her help and advice.

I would like to thank all people who encouraged and supported me during the undertaking of this work.

References

- 1. Dulin, F.H. et al (1960) Journal of Am. Ceram, Phase equilibria in the system ZnO–TiO₂, Soc. 43 ,125–131.
- D. Sun, X. Yan, J. Chen, S. Yu, L. Hu and Q. Xue, Chem. Eng. Commun., 13,3905–3909 (2011).
- 3. F.H. Dulin, D.E. Rase, J. Am. Ceram. Soc. 43 (1960) 125.
- 4. H. T. Kim, S. H. Kim, S. Nahm, J.D. Byun, and Y. Kim, "Lowtemperature sintering and microwave dielectric properties of zinc metatitanate-rutile mixtures using boron," *Journal of theAmerican Ceramic Society*, vol. 82, no. 11, pp. 3043– 3048, 1999.
- 5. H.T. Kim, Y. Kim, M. Valant, D. Suvorov, J. Am. Ceram. Soc. 84 (2001) 1081.
- 6. J. Burschka, N. Pellet, S. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gr¨atzel, Sequential deposition as a route to high-performance perovskitesensitized solar cells, Nature 499, pp. 316–319, 2013.
- 7. Kim, H.T. et al (1999) journal of Am. Ceram, Low-fired (Zn, Mg) TiO microwave dielectrics, Soc. 82 (12) 3476–3480.
- M. Liu, M. B. Johnston, and H. J. Snaith, *Efficient planar heterojunction perovskite solar* cells by vapour deposition, Nature 501, pp. 395–398, 2013.
- Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, and J. Huang, Large fill-factor bilayer iodine perovskite solar cells fabricated by low-temperature solution-process, Energy Environ. Sci. 7 (7), pp. 2359–2365, 2014. doi:10.1039/C4EE00233D.
- 10. S.F. Bartram, R.A. Slepetys, J. Am. Ceram. Soc. 44 (1961) 493.
- 11. U. Steinike, B. Wallis, Cryst. Res. Technol. 32 (1997) 187.